

Readme

	SKA SDP TMLITE Server
	Requirements

	Install

	Testing

	Code analysis

	Writing documentation

	Development

TMLite Documentation

These are all the packages, functions and scripts that form part of the project.

	TMLite Server

SKA SDP TMLITE Server

[image: _images/c2abf0b98f6141346ffcb7c767b42e161ca7401d.svg]Documentation Status [https://ska-telescope-sdp-tmlite-server.readthedocs.io/en/latest/?badge=latest]

There is likely to be a wider implementation of a more capable telescope model - however for the purposes of quick SDP development this is fastAPI based server - which will deliver JSON formatted products - backed by a JSON formatted telescope model.

I have decided to isolate the server, the model and the model maintainer into three objects. The server will be this repository. The physical form of the model will be a JSON structure, The creation and maintenance of the JSON structure is provided by a third product.

Requirements

The system used for development needs to have Python 3 and pip installed.

Install

Always use a virtual environment. Pipenv [https://pipenv.readthedocs.io/en/latest/] is now Python’s officially
recommended method, but we are not using it for installing requirements when building on the CI Pipeline. You are encouraged to use your preferred environment isolation (i.e. pip, conda or pipenv while developing locally.

For working with Pipenv, follow these steps at the project root:

First, ensure that ~/.local/bin is in your PATH with:

> echo $PATH

In case ~/.local/bin is not part of your PATH variable, under Linux add it with:

> export PATH=~/.local/bin:$PATH

or the equivalent in your particular OS.

Then proceed to install pipenv and the required environment packages:

> pip install pipenv # if you don't have pipenv already installed on your system
> pipenv install
> pipenv shell

You will now be inside a pipenv shell with your virtual environment ready.

Use exit to exit the pipenv environment.

Testing

	Put tests into the tests folder

	Use PyTest [https://pytest.org] as the testing framework

	Reference: PyTest introduction [http://pythontesting.net/framework/pytest/pytest-introduction/]

	Run tests with python setup.py test

	Configure PyTest in setup.py and setup.cfg

	Running the test creates the htmlcov folder

	Inside this folder a rundown of the issues found will be accessible using the index.html file

	All the tests should pass before merging the code

Code analysis

	Use Pylint [https://www.pylint.org] as the code analysis framework

	By default it uses the PEP8 style guide [https://www.python.org/dev/peps/pep-0008/]

	Use the provided code-analysis.sh script in order to run the code analysis in the module and tests

	Code analysis should be run by calling pylint ska_python_skeleton. All pertaining options reside under the .pylintrc file.

	Code analysis should only raise document related warnings (i.e. #FIXME comments) before merging the code

Writing documentation

	The documentation generator for this project is derived from SKA’s SKA Developer Portal repository [https://github.com/ska-telescope/developer.skatelescope.org]

	The documentation can be edited under ./docs/src

	If you want to include only your README.md file, create a symbolic link inside the ./docs/src directory if the existing one does not work:

$ cd docs/src
$ ln -s ../../README.md README.md

	In order to build the documentation for this specific project, execute the following under ./docs:

$ make html

	The documentation can then be consulted by opening the file ./docs/build/html/index.html

Development

PyCharm

As this project uses a src folder structure [https://blog.ionelmc.ro/2014/05/25/python-packaging/#the-structure],
under Preferences > Project Structure, the src folder needs to be marked as “Sources”. That will
allow the interpreter to be aware of the package from folders like tests that are outside of src.
When adding Run/Debug configurations, make sure “Add content roots to PYTHONPATH” and
“Add source roots to PYTHONPATH” are checked.

Todo

	Insert todo’s here

TMLite Server

This server uses fastAPI to serve the contents of the prototype_model.json file via a web interface.

Starting the Server

I would suggest that new users check out the documentation for fastAPI [https://fastapi.tiangolo.com] as this will clearly demonstrate how
this is set up.

The simplest way to launch the current server is via docker-compose. Running the following:
docker-compose up --build

This will execute the following docker-compose which will start a container running the server and exposing
port 80 of the container:

version: '2'
services:
 tmlite:
 build:
 context: .
 dockerfile: Dockerfile
 container_name: ska-sdp-tmlite-server
 volumes:
 - "/var/run/docker.sock:/var/run/docker.sock"
 hostname: localhost
 expose:
 - "80"
 ports:
 - "80:80/tcp"
 command: ["uvicorn", "ska.tmlite.main:app", "--host", "0.0.0.0", "--port", "80"]

Accessing The Server

One of the advantages of fastAPI is that it self documents. So once you have the server running simply connect to
it:

> docker-compose up --build
.....
> ska-sdp-tmlite-server | INFO: Uvicorn running on http://0.0.0.0:80 (Press CTRL+C to quit)

Assuming you kept the same port exposure open your browser at
http://localhost:80/docs

For example the request to obtain the full model is:

>curl -X 'GET' 'http://localhost/model/current' -H 'accept: application/json'

And this will return the full model

The Model Structure

On server construction there are two models created a “default” model and a “current” model. The default model should
not be altered but the current one can be changed in part. Also new models can be added and altered at will. WHen the
server shuts down all alterations are lost. THis scheme is not for the long term storage of models - but the short
term access of them.

Storage backends

The initial Telescope Model data is loaded
from one of the supported storage backends.
The storage to be used is selected
by setting the STORAGE_BACKEND environment variable
to the name of one of the supported storage backends.

Currently only a GitLab storage backend is supported,

gitlab backend

The gitlab storage backend
loads a Telescope Model file
from the SKA SDP TMLite data repository [https://developer.skao.int/projects/ska-sdp-tmlite-repository/en/latest/index.html] repository.
Please read its documentation,
as it explains how data is organised and presented.
Note that like this project,
the TMLite data repository is also currently designed
to work in a read-only fashion
from the standpoint of this TMLite server.

A set of environment variables control this process,
all of which must be prefixed with STORAGE_BACKEND__:

	CLONE_DIRECTORY
is the local directory holding the clone of the repository,
defaults to <OS-temp-dir>/tmplite_gitlab_repository.

	PRIVATE_TOKEN, JOB_TOKEN and OAUTH_TOKEN,
if defined, are used for authentication against GitLab.

	MODEL_PATH is the file to be loaded from the repository clone
as the Telescope Model, it defaults to prototype_model.json.

	REPOSITORY_REF indicates the git reference (SHA, branch, tag)
to retrieve when cloning the repository. If not given,
the default repository branch is used.

If the CLONE_DIRECTORY doesn’t exist
then a clone of the repository is created in that location.
If it exists no further action occurs.
Note that this implies
that this backend can be used to point
to an existing directory/file in the local filesystem
containing a valid Telescope Model,
even if that directory is not a git repository.

At the moment, and as mentioned earlier,
all editions are ephemeral:
once the server shuts down they are all lost.

Example API tasks

Probably the simplest way to access this is via the python requests module - but of course for the GET methods you
can even use a browser if you want.

Getting the full default model

A simple python api:

> import request
> url = "http://localhost/model/default/"
> response = requests.get(url)

Getting the current model

Is as simple as changing the URL:

> url = "http://localhost/model/current/"

But there are a number of methods coded up for you to get subsets of the model and even change things for example:

> url = "http://localhost/current/ska1_low/update_antennas"
> mccs = {"station_ids": ['0','1','2','3']}
> response = requests.post(url,json=mccs)

This will update the current model to only include antennas from the list.

Extending the Model and Server

This is a minimal hello world implementation - You should have enough information to extend the server to respond more smartly to requests and
return slices through the model for example.

Public API

The FastAPI is documented internally at http://localhost:80/docs once the server is running.
The functions and classes currently implemented in the model are:

	Models

	Server functions
	add_model()

	get_instrument()

	get_model()

	get_layout()

	get_static_rfi_mask()

	read_root()

	update_model_antennas()

	update_model_layout_from_file()

	update_model_layout_from_storage()

	update_model_layout()

	Client

Models

	
class ska.tmlite.models.Station(*, interface: str, station_name: str, diameter: str, properties: Optional[MCCSProperties] = None, location: Optional[TelModelLocation] = None, fixed_delays: List[TelModelFixedDelays] = [], niao: float, long: Optional[str] = None, lat: Optional[str] = None, x: Optional[float] = None, y: Optional[float] = None, z: Optional[float] = None)

	The schema for the SKA stations:

	Parameters

	
	name – (str) an identifier for the station

	dish_diameter – (str) dish/stations size in meters

	long – (str) longitude [optional]

	lat – (str) latitude [optional]

	x – (float) Geocentric x

	y – (float) Geocentric y

	z – (float) Geocentric z

	
class ska.tmlite.models.LayOut(*, description: Optional[str] = None, reference: Optional[str] = None, comment: Optional[str] = None, revision: Optional[str] = None, telescope: str, coordinates: Optional[str] = None, units: Optional[str] = None, receptors: List[Station] = [])

	The Schema for station layout

	Parameters

	
	description – str identifier

	reference – str where did this come from (provinence?)

	comment – str

	revision – str

	telescope – str telescope name (dup)

	coordinates – str Coordinate frame (ITRF)

	units – str (meters etc

	antennas – Set[Station] = [] an array of Station

	
class ska.tmlite.models.RFI(*, description: str, freq_start: str, freq_stop: str)

	RFI Schema

	Parameters

	
	description – str identifier (what source etc)

	freq_start – str (Hz)

	freq_stop – str (Hz)

	
class ska.tmlite.models.SKA1Mid(*, layout: LayOut, static_rfi_mask: Optional[List[RFI]] = None)

	Container item for the model for SKA1 Mid

	Parameters

	
	layout – LayOut

	static_rfi_mask – Set[RFI] = []

	
class ska.tmlite.models.SKA1Low(*, layout: LayOut, static_rfi_mask: Optional[List[RFI]] = None)

	Container item for the model for SKA1 Low

	Parameters

	
	layout – LayOut

	static_rfi_mask – Set[RFI] = []

	
class ska.tmlite.models.Instruments(*, ska1_low: Optional[SKA1Low] = None, ska1_mid: Optional[SKA1Mid] = None)

	Container item for the Instrumets

	Parameters

	
	ska1_low – SKA1Low

	ska1_mid – SKA1Mid

	
class ska.tmlite.models.TModelLite(*, instrument: Instruments)

	Container item for the whole model

	Parameters

	instrument – Instruments

	
class ska.tmlite.models.MCCSGeoJSON(*, type: str, name: str, crs: MCCSCrs, features: List[MCCSFeatures])

	Container item for the GeoJSON file generated by MCCS.
Ideally we would not have to add this. But it has been deemed
necessary to demonstrate the reading in of this file format.

Currently,the schema is:

	Parameters

	
	type – str

	name – str

	crs – MCCSCrs

	features – List[MCCSFeatures]

	
class ska.tmlite.models.MCCSCrs(*, type: str, properties: MCCSProperties)

	The CRS items in the MCCS GeoJSON file

	Parameters

	
	type – str

	properties – MCCSProperties

	
class ska.tmlite.models.MCCSFeatures(*, type: str, properties: MCCSProperties, geometry: MCCSGeometry)

	The Feature carries the station information in the MCCSGeoJSON
model

	Parameters

	
	type – str

	properties – MCCSProperties

	geometry – MCCSGeometry

	
class ska.tmlite.models.MCCSGeometry(*, type: str, coordinates: List[float])

	The MCCS Geometry object - this is what actually contains the location

	Parameters

	
	type – str

	coordinates – List[float]

	
class ska.tmlite.models.MCCSProperties(*, name: str, nof_antennas: Optional[int] = None, antenna_type: Optional[str] = None, tpms: Optional[Set[int]] = None, station_num: Optional[int] = None)

	The Properties Object - contains a description of the station

	Parameters

	
	name – str

	nof_antennas – Optional[int] = None

	antenna_type – Optional[str] = None

	tpms – Optional[Set[int]] = None

	station_num – Optional[int] = None

Server functions

	
async ska.tmlite.server.main.add_model(item_id: str, item: Union[TModelLite, MCCSGeoJSON])

	PUT method that takes a full model to add - will replace
If the model is in MCCSGeoJSON format we will convert it to TModelLite
model
:param model: TModelLite or MCCSGeoJSON in json format
:return: the model:

	
async ska.tmlite.server.main.get_instrument(item_id: str, instrument_id: str)

	GET method for the given instrument

	Parameters

	item_id – str

	Returns

	model

	
async ska.tmlite.server.main.get_model(item_id: str)

	GET method for the given model

	Parameters

	item_id – str the label for the model that is to be returned

	Returns

	model

	
async ska.tmlite.server.main.get_layout(item_id: str, instrument: str)

	GET method for the given model - perform a conversion from any other model

	Parameters

	item_id – str

	Returns

	model

	
async ska.tmlite.server.main.get_static_rfi_mask(item_id: str, instrument_id: str)

	GET method to return the rfi mask

	Returns

	the JSON representation of the RFI mask

	
ska.tmlite.server.main.read_root()

	

	
async ska.tmlite.server.main.update_model_antennas(item_id: str, instrument_id: str, item: Mccs)

	Update the layout of the current model to match the input
This actually takes the current station_id’s and uses them
to add the antennas that match the IDs from the default model
into the current model.

	
async ska.tmlite.server.main.update_model_layout_from_file(item_id: str, instrument_id: str, item: Union[TModelLite, MCCSGeoJSON])

	Updates the layout using an input model (either TModelLite or MCCSGeoJSON

	
async ska.tmlite.server.main.update_model_layout_from_storage(item_id: str, instrument_id: str, file_id: str)

	Updates the layout using the contents of a file in the backend storage

	
ska.tmlite.server.main.update_model_layout(item_id: str, instrument_id: str, item: dict)

	Updates the current model layout with the contents of the dictionary

	Parameters

	
	item_id – str - the label of the model to be updated

	instrument_id – str the instrument [ska1_low | ska1_mod]

	item – dict JSON representation of the station position

Client

Index

 A
 | G
 | R
 | U

A

 	
 	add_model() (in module ska.tmlite.server.main)

G

 	
 	get_instrument() (in module ska.tmlite.server.main)

 	get_layout() (in module ska.tmlite.server.main)

 	
 	get_model() (in module ska.tmlite.server.main)

 	get_static_rfi_mask() (in module ska.tmlite.server.main)

R

 	
 	read_root() (in module ska.tmlite.server.main)

U

 	
 	update_model_antennas() (in module ska.tmlite.server.main)

 	update_model_layout() (in module ska.tmlite.server.main)

 	
 	update_model_layout_from_file() (in module ska.tmlite.server.main)

 	update_model_layout_from_storage() (in module ska.tmlite.server.main)

 nav.xhtml

 Table of Contents

 		
 TMLite Documentation

 		
 SKA SDP TMLITE Server

 		
 Requirements

 		
 Install

 		
 Testing

 		
 Code analysis

 		
 Writing documentation

 		
 Development

 		
 PyCharm

_static/img/logo.jpg
SOUARE KILOMETRE ARRAY

_static/minus.png

_static/plus.png

_static/file.png

